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Introduction: Chemical measurements of Martian
surface are currently made using y-ray and neutron
spectrometers onboard Odyssey [1-6]. The high-
quality y-ray detector reveals spectral lines representa-
tive of bulk elements at the surface of the planet [7].
However, interpreting these spectra is challenging be-
cause of the low signal-to-background ratio.

Here, to better handle the overall Y emission from
Mars, we analyze the total number of counts measured
by the y-ray spectrometer. From these measurements,
we derive a y-albedo parameter, which reveals infor-
mation on Martian atmosphere through spatial and
time variations.

Y-Albedo Definition: By extension of the well-
known concept of albedo in visible wavelengths, we
define the y-albedo as the ratio between the number of
photons emitted by Mars at energy higher than
100 keV, and a value representative of y source.

This definition implies that (1) we can make the
difference between photons coming from Mars and
any other events in the detector; (2) we have a meas-
urement of 'y source activity. The first point is resolved
by selecting a spectral window corresponding mostly
to Martian emissions. The second point can be over-
come with the detector counting rate at the highest
energies, called ULD for Upper Level Discriminator.
Indeed, we will illustrate in the following text that
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ULD counting rate is a measurement of Galactic Cos-
mic Ray activity, which in turn is the major source of
Y-photons [8].

Observations and Simulations: We processed all
available spectra between February 20, 2002, and Sep-
tember 22, 2002. A total of 693,329 spectra cumulated
over 19.6 s have been analyzed. The mean number of
counts between 100 keV and 10 MeV is 176 counts s
(170 after boom deployment), with a standard devia-
tion of about 20 counts s™.

On the other hand, we developed a full numerical
model of the instrument [9]. Expected background
counting rate has been evaluated. Figure 1 shows the
various components forming the background in the
detector, and their relative levels. For an average Sun
activity, we predicted a total background level at about
160 counts s™'. As shown on Figure 1, the actual meas-
urement is higher (10 %) due to discrepancies at high-
energy, but in the following we concentrate on the
low-energy band where the agreement is good between
measurement and numerical calculations.

Figure 1 reveals that Martian flux of y photons
(other than rays contributing to spectral lines) is domi-
nant between 0.5 and 1,1 MeV, as more than 90 % of
the background. We therefore use that spectral win-
dow to define the y-albedo thereafter. This is a conser-
vative definition: the energy window could be ex-
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Figure 1: Odyssey Gamma-Ray Spectrometer observation at Mars, and the decomposition of its background
into various components as predicted by numerical simulations. Cosmic electrons (not shown) are included. Ac-
tual measurements include spectral lines representative of soil composition.
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tended up to 4 MeV, where signal from Mars still con-
tributes for 80 % of the total.

Note that we also see in Figure 1 the dominant ef-
fect of Galactic Cosmic Rays (proton and alpha parti-
cles) at high-energy, justifying the use of the counting
rate at high-energy (ULD) to normalize the y-albedo.

Time Variations: The y-albedo changes as a func-
tion of time. Figure 2 shows the y-albedo for the suc-
cessive orbits of Odyssey. Large gaps in Figure 2
match the two annealing operations (orbits 220-414,
and 939-1131) and the boom deployment (orbits 1252-
1299). The strong decrease after orbit 1870 is a resid-
ual effect of a Solar Particle Event in July 2002 that
impacted the measurements for a long time [10]. Dis-
continuities are not fully understood today and will be
addressed in future works. A periodical variation with
a 6-orbit frequency has been identified, which reveals
longitudinal variations. These spatial variations are
interpreted as atmospheric effects in the next para-
graph. At last, an additional recurrent variation with a
frequency of about 150 orbits (12.5 days) might be
present, but need to be confirmed.
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Figure 2: Time variation of Martian y-albedo.

Spatial Variations: Figure 3 shows the correla-
tion between the y-albedo and the topography of the
surface. Obviously, the lower is the surface, the thicker
is the atmosphere and more photons are lost before
reaching the spacecraft.

Figure 3 reveals a significant difference between
polar and equatorial latitudes. The y-albedo is 5 %
lower in polar regions than in equatorial regions. Pre-
vious results demonstrate the presence of light ele-
ments (hydrogen and carbon) in high concentrations in
the near subsurface at both poles [11-13]. We know
that the presence of light elements strongly diminish
the neutron production in the soil [14], and conse-
quently the number of y-photons produced. Realistic
simulations are planned to confirm this interpretation.

Equatorward, the relationship between the y-albedo
and topography looks linear with an excellent correla-
tion coefficient (Figure 3). This relationship holds for
energy ranges other than [0.5, 1.1] keV, but the slope
of the linear regression changes. This result was ex-
pected since the transparency of the atmosphere is

function of the photon energy. Preliminary results
demonstrate that the slope, correlating the y-continuum
to the topography, follows a law as E™'°, where E is the
Y-photon energy.

Conclusion: Defining and using the Martian
v-albedo measured by Odyssey, we hope to derive
some information on the Martian atmosphere. Because
of a large counting rate, the y-albedo presents a good
statistics. This parameter is also mostly independent on
soil compositions, and therefore it is more appropriate
to study atmospheric effects than spectral lines.

A first result is the fact that the y-albedo is repre-
sentative of atmospheric attenuation. From there, we
should be able to derive the atmospheric scale or/and
attenuation coefficient. If this technique is sensitive
enough, we might be able to monitor some changes
with time or seasons. Note that this study can be sup-
ported by neutron spectroscopy, which is also sensitive
to the mass of the atmosphere [15]

Spatial variations must also be investigated in de-
tails to help in extracting spectrum lines that represent
Martian soil compositions.
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Figure 3: Correlation between the y-albedo and the
topography. Diamonds are south of -45° latitude, aster-
isks are north of +45° latitude, and plain circles are
equatorward. Spatial resolution is 30° at the equator.
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